ANALYTICAL SOLUTION OF A REFINED SHEAR DEFORMATION THEORY FOR RECTANGULAR COMPOSITE PLATES

A. A. KHDEIR, J. N. REDDY and L. LIBRESCU Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A.

(Received 10 June 1986; in revised form 6 April 1987)

Abstract—The Lévy type solution procedure in conjunction with the state-space concept is used to determine the deflections and stresses for symmetric laminated composite plates with rectangular geometries by using a refined shear deformation theory. Combinations of simply supported, clamped and free boundary conditions are considered. Numerical results are presented for rectangular plates with different edge conditions, aspect ratios, lamination schemes and loadings. The solution should serve as a reference for designers and practitioners of numerical/computational methods.

INTRODUCTION

Three-dimensional elasticity solutions for the bending of simply supported thick orthotropic rectangular plates and laminates were obtained by Srinivas and his coworkers[1-3], and Pagano[4]. The Navier solution of simply supported rectangular plates was developed by Whitney and Leissa[5] for classical laminate theory, Pagano and Whitney[6-8], Bert and Chen[9] and Reddy and Chao[10] for the first-order shear deformation (i.e. the Reissner-Mindlin plate) theory[11], and by Reddy and his colleagues[12-14] for refined shear deformation theories. Recently, the Lévy type solutions were developed by Reddy *et al.*[15] for symmetric laminates with different combinations of free, clamped and simply supported boundary conditions by using the first-order shear deformation theory.

The present study deals with the development of the Lévy type solution of the refined shear deformation theory of Reddy[12, 13] for symmetric rectangular laminates with two opposite edges simply supported and the remaining edges subjected to a combination of free, simply supported and clamped boundary conditions. The state-space concept is used to solve the ordinary differential equations obtained after the application of the Lévy solution procedure.

GOVERNING EQUATIONS

Consider a laminated plate composed of N orthotropic layers, symmetrically located with respect to the midplane of the laminate. The governing equations of the refined theory are based on the following displacement field [11-13]:

$$u_{1} = u + z \left[\psi_{x} - \frac{4}{3} \left(\frac{z}{h} \right)^{2} \left(\psi_{x} + \frac{\partial w}{\partial x} \right) \right]$$
$$u_{2} = v + z \left[\psi_{y} - \frac{4}{3} \left(\frac{z}{h} \right)^{2} \left(\psi_{y} + \frac{\partial w}{\partial y} \right) \right]$$
$$u_{3} = w$$
(1)

where (u_1, u_2, u_3) are the displacements along the x-, y- and z-coordinates respectively (u, v, w) are the corresponding displacements of a point on the midplane of the laminate, and ψ_x and ψ_y are the rotations of a transverse normal about the y- and x-axes, respectively.

The cubic variation of u_1 and u_2 through laminate thickness introduces higher-order resultants

$$P_{i} = \int_{-h/2}^{h/2} \sigma_{i} z^{3} dz \qquad (i = 1, 2, 6)$$
$$(R_{1}, R_{2}) = \int_{-h/2}^{h/2} z^{2}(\sigma_{5}, \sigma_{4}) dz$$

and laminate stiffnesses

$$(F_{ij}, H_{ij}) = \int_{-h/2}^{h/2} Q_{ij}(z^4, z^6) dz \qquad (i, j = 1, 2, 6)$$
$$(D_{ij}, F_{ij}) = \int_{-h/2}^{h/2} Q_{ij}(z^2, z^4) dz \qquad (i, j = 4, 5).$$

For symmetrical cross-ply laminated plates, the following stiffness coefficients vanish[11]:

$$B_{ij} = E_{ij} = 0$$
 for $i, j = 1, 2, 4, 5, 6$
 $A_{16} = A_{26} = D_{16} = D_{26} = F_{16} = F_{26} = H_{16} = H_{26} = 0$
 $A_{45} = D_{45} = F_{45} = 0.$

This implies that the effect of coupling between stretching and bending vanishes. For such laminates the governing equations are given by (see Refs [11, 12])

Analytical solution of a refined shear deformation theory for rectangular composite plates

$$+F_{66}\left(\frac{\partial^{2}\psi_{y}}{\partial x \partial y}+\frac{\partial^{2}\psi_{x}}{\partial y^{2}}\right)+H_{66}\left(-\frac{4}{3h^{2}}\right)\left(\frac{\partial^{2}\psi_{x}}{\partial y^{2}}+\frac{\partial^{2}\psi_{y}}{\partial x \partial y}+\frac{2\partial^{3}w}{\partial x \partial y^{2}}\right)\right]+\frac{4}{h^{2}}\left[D_{55}\left(\frac{\partial w}{\partial x}+\psi_{x}\right)+F_{55}\left(-\frac{4}{h^{2}}\right)\left(\psi_{x}+\frac{\partial w}{\partial x}\right)\right]=0$$
(2b)

$$D_{66}\left(\frac{\partial^{2}\psi_{x}}{\partial x \partial y} + \frac{\partial^{2}\psi_{y}}{\partial x^{2}}\right) + F_{66}\left(-\frac{4}{3h^{2}}\right)\left(\frac{\partial^{2}\psi_{x}}{\partial x \partial y} + \frac{\partial^{2}\psi_{y}}{\partial x^{2}} + 2\frac{\partial^{3}w}{\partial x^{2} \partial y}\right) + D_{12}\frac{\partial^{2}\psi_{x}}{\partial x \partial y}$$

$$+ D_{22}\frac{\partial^{2}\psi_{y}}{\partial y^{2}} + F_{12}\left(-\frac{4}{3h^{2}}\right)\left(\frac{\partial^{2}\psi_{x}}{\partial x \partial y} + \frac{\partial^{3}w}{\partial x^{2} \partial y}\right) + F_{22}\left(-\frac{4}{3h^{2}}\right)\left(\frac{\partial^{2}\psi_{y}}{\partial y^{2}} + \frac{\partial^{3}w}{\partial y^{3}}\right)$$

$$- \left[A_{44}\left(\psi_{y} + \frac{\partial w}{\partial y}\right) + D_{44}\left(-\frac{4}{h^{2}}\right)\left(\psi_{y} + \frac{\partial w}{\partial y}\right)\right] - \frac{4}{3h^{2}}\left[F_{66}\left(\frac{\partial^{2}\psi_{y}}{\partial x^{2}} + \frac{\partial^{2}\psi_{x}}{\partial y \partial x}\right)\right]$$

$$+ H_{66}\left(-\frac{4}{3h^{2}}\right)\left(\frac{\partial^{2}\psi_{x}}{\partial x \partial y} + \frac{\partial^{2}\psi_{y}}{\partial x^{2}} + \frac{2\partial^{3}w}{\partial x^{2} \partial y}\right) + F_{12}\frac{\partial^{2}\psi_{x}}{\partial x \partial y} + H_{12}\left(-\frac{4}{3h^{2}}\right)\left(\frac{\partial^{2}\psi_{x}}{\partial x \partial y} + \frac{\partial^{2}\psi_{y}}{\partial x^{2}} + \frac{2\partial^{3}w}{\partial x^{2} \partial y}\right) + F_{12}\frac{\partial^{2}\psi_{x}}{\partial x \partial y} + H_{12}\left(-\frac{4}{3h^{2}}\right)\left(\frac{\partial^{2}\psi_{x}}{\partial x \partial y} + \frac{\partial^{2}\psi_{y}}{\partial x^{2}} + \frac{2\partial^{3}w}{\partial x^{2} \partial y}\right) + F_{12}\frac{\partial^{2}\psi_{x}}{\partial x \partial y} + H_{12}\left(-\frac{4}{3h^{2}}\right)\left(\frac{\partial^{2}\psi_{x}}{\partial x \partial y} + \frac{\partial^{2}\psi_{y}}{\partial x^{2}} + \frac{\partial^{2}\psi_{y}}{\partial y^{2}} + \frac{\partial^{3}w}{\partial y^{3}}\right) + F_{44}\left(-\frac{4}{h^{2}}\right)\left(\frac{\partial w}{\partial y} + \psi_{y}\right) = 0.$$
(2c)

Here w denotes the transverse displacement, ψ_x and ψ_y are the rotations of the normal to midplane about the y- and x-axes, respectively, q is the distributed transverse load, and A_{ij} , D_{ij} , F_{ij} , H_{ij} are the plate stiffnesses, defined by

$$(D_{ij}, F_{ij}, H_{ij}) = \sum_{k=1}^{N} \int_{z_k}^{z_{k+1}} Q_{ij}^{(k)}(z^2, z^4, z^6) dz \qquad (i, j = 1, 2, 6)$$

$$(A_{ij}, D_{ij}, F_{ij}) = \sum_{k=1}^{N} \int_{z_k}^{z_{k+1}} Q_{ij}^{(k)}(1, z^2, z^4) dz \qquad (i, j = 4, 5).$$
(3)

Here $Q_{ij}^{(k)}$ denote the reduced orthotropic moduli of the kth lamina. The boundary conditions of the refined theory are of the form : specify

$$\begin{array}{cccc} w & \text{or } Q_n \\ \frac{\partial w}{\partial n} & \text{or } P_n \\ \psi_n & \text{or } M_n \\ \psi_{ns} & \text{or } M_{ns} \end{array} \right\} \quad \text{on } \Gamma \qquad (4)$$

where Γ is the boundary of the midplane Ω of the plate, and

$$M_{n} = \hat{M}_{1}n_{x}^{2} + \hat{M}_{2}n_{y}^{2} + 2\hat{M}_{6}n_{x}n_{y}$$

$$M_{ns} = (\hat{M}_{2} - \hat{M}_{1})n_{x}n_{y} + \hat{M}_{6}(n_{x}^{2} - n_{y}^{2})$$

$$P_{n} = P_{1}n_{x}^{2} + P_{2}n_{y}^{2} + 2P_{6}n_{x}n_{y}$$

$$P_{ns} = (P_{2} - P_{1})n_{x}n_{y} + P_{6}(n_{x}^{2} - n_{y}^{2})$$

$$Q_{n} = \hat{Q}_{1}n_{x} + \hat{Q}_{2}n_{y} + \frac{4}{3h^{2}}\left(\frac{\partial P_{ns}}{\partial s} + \frac{\partial P_{n}}{\partial n}\right)$$

SAS 23:10-H

1449

A. A. KHDEIR et al.

$$\hat{M}_{i} = M_{i} - \frac{4}{3h^{2}}P_{i} \qquad (i = 1, 2, 6)$$

$$\hat{Q}_{i} = Q_{i} - \frac{4}{h^{2}}R_{i} \qquad (i = 1, 2)$$

$$\frac{\partial}{\partial n} = n_{x}\frac{\partial}{\partial x} + n_{y}\frac{\partial}{\partial y}, \qquad \frac{\partial}{\partial s} = n_{x}\frac{\partial}{\partial y} - n_{y}\frac{\partial}{\partial x}.$$
(5)

The stress resultants appearing in eqns (5) can be expressed in terms of the generalized displacements (w, ψ_x, ψ_y) as

$$\begin{split} M_{1} &= D_{11} \frac{\partial \psi_{x}}{\partial x} + D_{12} \frac{\partial \psi_{y}}{\partial y} + F_{11} \left(-\frac{4}{3h^{2}} \right) \left(\frac{\partial \psi_{x}}{\partial x} + \frac{\partial^{2} w}{\partial x^{2}} \right) + F_{12} \left(-\frac{4}{3h^{2}} \right) \left(\frac{\partial \psi_{y}}{\partial y} + \frac{\partial^{2} w}{\partial y^{2}} \right) \\ M_{2} &= D_{12} \frac{\partial \psi_{x}}{\partial x} + D_{22} \frac{\partial \psi_{y}}{\partial y} + F_{12} \left(-\frac{4}{3h^{2}} \right) \left(\frac{\partial \psi_{x}}{\partial x} + \frac{\partial^{2} w}{\partial x^{2}} \right) + F_{22} \left(-\frac{4}{3h^{2}} \right) \left(\frac{\partial \psi_{y}}{\partial y} + \frac{\partial^{2} w}{\partial y^{2}} \right) \\ M_{6} &= D_{66} \left(\frac{\partial \psi_{x}}{\partial y} + \frac{\partial \psi_{y}}{\partial x} \right) + F_{66} \left(-\frac{4}{3h^{2}} \right) \left(\frac{\partial \psi_{x}}{\partial y} + \frac{\partial \psi_{y}}{\partial x} + 2 \frac{\partial^{2} w}{\partial x \partial y} \right) \\ Q_{2} &= A_{44} \left(\psi_{y} + \frac{\partial w}{\partial y} \right) + D_{44} \left(-\frac{4}{h^{2}} \right) \left(\psi_{x} + \frac{\partial w}{\partial y} \right) \\ Q_{1} &= A_{55} \left(\psi_{x} + \frac{\partial w}{\partial x} \right) + D_{55} \left(-\frac{4}{h^{2}} \right) \left(\psi_{x} + \frac{\partial w}{\partial x} \right) \\ P_{1} &= F_{11} \frac{\partial \psi_{x}}{\partial x} + F_{12} \frac{\partial \psi_{y}}{\partial y} + H_{11} \left(-\frac{4}{3h^{2}} \right) \left(\frac{\partial \psi_{x}}{\partial x} + \frac{\partial^{2} w}{\partial x^{2}} \right) + H_{12} \left(-\frac{4}{3h^{2}} \right) \left(\frac{\partial \psi_{y}}{\partial y} + \frac{\partial^{2} w}{\partial y^{2}} \right) \\ P_{2} &= F_{12} \frac{\partial \psi_{x}}{\partial x} + F_{22} \frac{\partial \psi_{y}}{\partial y} + H_{12} \left(-\frac{4}{3h^{2}} \right) \left(\frac{\partial \psi_{x}}{\partial x} + \frac{\partial^{2} w}{\partial x^{2}} \right) + H_{22} \left(-\frac{4}{3h^{2}} \right) \left(\frac{\partial \psi_{y}}{\partial y} + \frac{\partial^{2} w}{\partial y^{2}} \right) \\ P_{6} &= F_{66} \left(\frac{\partial \psi_{y}}{\partial x} + \frac{\partial \psi_{x}}{\partial y} \right) + H_{66} \left(-\frac{4}{3h^{2}} \right) \left(\frac{\partial \psi_{x}}{\partial y} + \frac{\partial^{2} w}{\partial x \partial y} \right) \\ R_{2} &= D_{44} \left(\frac{\partial w}{\partial y} + \psi_{y} \right) + F_{44} \left(-\frac{4}{3h^{2}} \right) \left(\frac{\partial w}{\partial y} + \psi_{y} \right) \\ R_{1} &= D_{55} \left(\frac{\partial w}{\partial x} + \psi_{x} \right) + F_{55} \left(-\frac{4}{3h^{2}} \right) \left(\frac{\partial w}{\partial x} + \psi_{x} \right). \tag{6}$$

THE SOLUTION PROCEDURE

The Lévy method can be used to solve eqns (2) for rectangular plates for which two opposite edges are simply supported. The other two edges can each have arbitrary boundary conditions. Here we assume that the edges parallel to the y-axis are simply supported, and the origin of the coordinate system is taken as shown in Fig. 1. The simply supported boundary conditions can be satisfied by trigonometric functions in x. The resulting ordinary differential equations in y can be solved using the state-space concept.

Following the Lévy type procedure, we assume the following representation of the

Fig. 1. Geometry and coordinate system of rectangular plate.

displacements and loading:

$$w(x, y) = \sum_{m=1}^{\infty} W_m(y) \sin \alpha x$$

$$\psi_x(x, y) = \sum_{m=1}^{\infty} X_m(y) \cos \alpha x$$

$$\psi_y(x, y) = \sum_{m=1}^{\infty} Y_m(y) \sin \alpha x$$

$$q(x, y) = \sum_{m=1}^{\infty} Q_m(y) \sin \alpha x$$
(7)

where $\alpha = m\pi/a$ and W_m , X_m , Y_m and Q_m denote amplitudes of w, ψ_x , ψ_y and q, respectively. Substituting eqns (7) into eqns (2), we obtain

$$e_{1}W_{m}^{\prime\prime\prime\prime} + e_{2}W_{m}^{\prime\prime} + e_{3}W_{m} + e_{4}X_{m}^{\prime\prime} + e_{5}X_{m} + e_{6}Y_{m}^{\prime\prime\prime} + e_{7}Y_{m}^{\prime} + Q_{m} = 0$$

$$e_{8}W_{m}^{\prime\prime} + e_{9}W_{m} + e_{10}X_{m}^{\prime\prime} + e_{11}X_{m} + e_{12}Y_{m}^{\prime} = 0$$

$$e_{13}W_{m}^{\prime\prime\prime} + e_{14}W_{m}^{\prime} + e_{15}X_{m}^{\prime} + e_{16}Y_{m}^{\prime\prime} + e_{17}Y_{m} = 0$$
(8)

where primes on the variables indicate differentiation with respect to y, and

$$e_{1} = -\left(\frac{4}{3h^{2}}\right)^{2}H_{22}, \qquad e_{2} = 2\left(\frac{4}{3h^{2}}\right)^{2}\alpha^{2}(H_{12} + 2H_{66}) + A_{44} - \frac{8}{h^{2}}D_{44} + \left(\frac{4}{h^{2}}\right)^{2}F_{44}$$

$$e_{3} = -\alpha^{2}\left[\left(\frac{4}{3h^{2}}\right)^{2}\alpha^{2}H_{11} + \left(\frac{4}{h^{2}}\right)^{2}F_{55} - \frac{8}{h^{2}}D_{55} + A_{55}\right]$$

$$e_{4} = \alpha\frac{4}{3h^{2}}\left[-F_{12} + \frac{4}{3h^{2}}H_{12} - 2F_{66} + \frac{8}{3h^{2}}H_{66}\right]$$

$$e_{5} = \alpha^{3}\frac{4}{3h^{2}}\left(F_{11} - \frac{4}{3h^{2}}H_{11}\right) + \alpha\left[\frac{8}{h^{2}}D_{55} - \left(\frac{4}{h^{2}}\right)^{2}F_{55} - A_{55}\right]$$

$$e_{6} = \frac{4}{3h^{2}}\left(F_{22} - \frac{4}{3h^{2}}H_{22}\right)$$

$$e_{7} = \alpha^{2}\frac{4}{3h^{2}}\left[-F_{12} - 2F_{66} + \frac{4}{3h^{2}}(H_{12} + 2H_{66})\right] - \frac{8}{h^{2}}D_{44} + \left(\frac{4}{h^{2}}\right)^{2}F_{44} + A_{44}$$

$$e_{8} = e_{4}, \qquad e_{9} = e_{5}, \qquad e_{10} = D_{66} - \frac{8}{3h^{2}}F_{66} + \left(\frac{4}{3h^{2}}\right)^{2}H_{66}$$

$$e_{11} = \alpha^{2} \left[-D_{11} + \frac{8}{3h^{2}}F_{11} - \left(\frac{4}{3h^{2}}\right)^{2}H_{11} \right] + \frac{8}{h^{2}}D_{55} - \left(\frac{4}{h^{2}}\right)^{2}F_{55} - A_{55}$$

$$e_{12} = \alpha \left[D_{12} + D_{66} - \frac{8}{3h^{2}}(F_{12} + F_{66}) + \left(\frac{4}{3h^{2}}\right)^{2}(H_{12} + H_{66}) \right]$$

$$e_{13} = -e_{6}, \qquad e_{14} = -e_{7}, \qquad e_{15} = -e_{12}, \qquad e_{16} = D_{22} - \frac{8}{3h^{2}}F_{22} + \left(\frac{4}{3h^{2}}\right)^{2}H_{22}$$

$$e_{17} = \alpha^{2} \left[-D_{66} + \frac{8}{3h^{2}}F_{66} - \left(\frac{4}{3h^{2}}\right)^{2}H_{66} \right] + \frac{8}{h^{2}}D_{44} - \left(\frac{4}{h^{2}}\right)^{2}F_{44} - A_{44}. \qquad (9)$$

Equations (8) can be written as

$$W_m^{\prime\prime\prime\prime} = c_1 W_m^{\prime\prime} + c_2 W_m + c_3 X_m + c_4 Y_m^{\prime} + c_0 Q_m$$

$$X_m^{\prime\prime} = c_5 W_m^{\prime\prime} + c_6 W_m + c_7 X_m + c_8 Y_m^{\prime}$$

$$Y_m^{\prime\prime} = c_9 W_m^{\prime\prime\prime} + c_{10} W_m^{\prime} + c_{11} X_m^{\prime} + C_{12} Y_m$$
(10)

where

$$c_{1} = \left(\frac{e_{4}^{2}}{e_{10}} + \frac{e_{4}e_{6}e_{12}}{e_{10}e_{16}} - \frac{e_{6}e_{7}}{e_{16}} - e_{2}\right) / \left(e_{1} + \frac{e_{6}^{2}}{e_{16}}\right)$$

$$c_{2} = \left(\frac{e_{4}e_{5}}{e_{10}} + \frac{e_{5}e_{6}e_{12}}{e_{10}e_{16}} - e_{3}\right) / \left(e_{1} + \frac{e_{6}^{2}}{e_{16}}\right)$$

$$c_{3} = \left(\frac{e_{11}e_{4}}{e_{10}} + \frac{e_{11}e_{6}e_{12}}{e_{10}e_{16}} - e_{5}\right) / \left(e_{1} + \frac{e_{6}^{2}}{e_{16}}\right)$$

$$c_{4} = \left(\frac{e_{6}e_{17}}{e_{16}} + \frac{e_{4}e_{12}}{e_{10}} + \frac{e_{6}e_{12}^{2}}{e_{10}e_{16}} - e_{7}\right) / \left(e_{1} + \frac{e_{6}^{2}}{e_{16}}\right)$$

$$c_{0} = -\frac{e_{16}}{e_{1}e_{16} + e_{6}^{2}}$$

$$c_{5} = -e_{4}/e_{10}, \quad c_{6} = -e_{5}/e_{10}, \quad c_{7} = -e_{11}/e_{10}, \quad c_{8} = -e_{12}/e_{10}$$

$$c_{9} = e_{6}/e_{16}, \quad c_{10} = e_{7}/e_{16}, \quad c_{11} = e_{12}/e_{16}, \quad c_{12} = -e_{17}/e_{16}.$$
(11)

The linear system of ordinary differential equations, eqns (10), with constant coefficients can be reduced to a single matrix differential equation using the state-space concept (see Ref. [16])

$$\mathbf{x}' = A\mathbf{x} + \mathbf{b}. \tag{12}$$

This can be done by introducing the variables

$$\begin{aligned} x_1 &= W_m, & x_2 = W'_m, & x_3 = W''_m, & x_4 = W'''_m \\ x_5 &= X_m, & x_6 = X'_m, & x_7 = Y_m, & x_8 = Y'_m \end{aligned}$$
 (13)

where

$$\mathbf{x}' = \begin{cases} x_1' \\ x_2' \\ x_3' \\ x_4' \\ x_5' \\ x_6' \\ x_7' \\ x_8' \end{cases}, \quad \mathbf{b} = \begin{cases} 0 \\ 0 \\ 0 \\ C_0 Q_m \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{cases}$$

and

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ c_2 & 0 & c_1 & 0 & c_3 & 0 & 0 & c_4 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ c_6 & 0 & c_5 & 0 & c_7 & 0 & 0 & c_8 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & c_{10} & 0 & c_9 & 0 & c_{11} & c_{12} & 0 \end{bmatrix}.$$
 (14)

The solution of eqn (12) is given by

$$\mathbf{x} = \mathbf{e}^{Ay} \mathbf{K} + \mathbf{e}^{Ay} \int \mathbf{e}^{-A\xi} \mathbf{b} \, \mathrm{d}\xi \tag{15}$$

where **K** is a constant vector to be determined from the boundary conditions, e^{Ay} denotes the product

$$\mathbf{e}^{Ay} = [c] \begin{bmatrix} \mathbf{e}^{\lambda_{1}y} & & & \\ & \mathbf{e}^{\lambda_{2}y} & & \mathbf{0} \\ \mathbf{0} & & \ddots & \\ & & & \mathbf{e}^{\lambda_{8}y} \end{bmatrix} [c]^{-1}$$
(16)

[c] is the matrix of eigenvectors, $\lambda_i (i = 1, 2, 3, ..., 8)$ are the distinct eigenvalues associated with matrix A, and $[c]^{-1}$ is the inverse of the eigenvectors matrix [c].

The following boundary conditions are used on the remaining two edges (i.e. the edges parallel to the x-axis) at $y = \mp b/2$:

simply supported
$$w = \psi_x = P_2 = M_2 = 0$$

clamped $w = \frac{\partial w}{\partial y} = \psi_x = \psi_y = 0$
free $P_2 = M_2 = 0$
 $M_6 - \frac{4}{3h^2}P_6 = 0$
 $Q_2 - \frac{4}{h^2}R_2 + \frac{4}{3h^2}\left(\frac{\partial P_6}{\partial x} + \frac{\partial P_2}{\partial y}\right) = 0.$ (17)

Fig. 2. Various types of transverse loads.

NUMERICAL RESULTS

Numerical results are presented for orthotropic and symmetric cross-ply $(0^{\circ}/90^{\circ}/0^{\circ})$ plates subjected to three types of loads: uniformly distributed load (q_0) , triangular distributed load $(2q_0)$ and concentrated load P as shown in Fig. 2. The following sets of material properties are used in the calculations:

Material I

$$E_1 = 20.83 \times 10^6$$
 psi, $E_2 = 10.94 \times 10^6$ psi
 $G_{12} = 6.10 \times 10^6$ psi, $G_{13} = 3.71 \times 10^6$ psi
 $G_{23} = 6.19 \times 10^6$ psi, $v_{12} = 0.44$

Material II

$$E_1 = 19.2 \times 10^6$$
 psi, $E_2 = 1.56 \times 10^6$ psi
 $G_{12} = G_{13} = 0.82 \times 10^6$ psi, $G_{23} = 0.523 \times 10^6$ psi
 $v_{12} = 0.24$.

Tables 1–4 contain center deflections \bar{w} while Tables 5–8 contain non-dimensionalized axial stresses $\bar{\sigma}_{11}$ for orthotropic and symmetric cross-ply (0°/90°/0°) plates.

			ŵ					
a/b	h/a	 Loading	SS	CC	FF	SC	SF	CF
		UN	6.29	3.19	224.4	4.38	50.14	17.55
	0.2	TR	9.60	5.29	289.2	6.98	66.30	24.49
2		PL	20.95	14.46	371.4	17.09	93.46	40.99
3		UN	14.23	5.89	593.1	8.74	124.72	40.13
	0.14	TR	21.15	9.71	761.9	13.71	163.50	55.13
		PL	42.38	25.71	966 .8	31.83	222.8	87.19
		UN	2.72	1.53	226.3	2.03	34.64	8.07
	0.2	TR	4.47	2.68	291.6	3.44	46.13	11.91
	0.2	PL	12.38	9.10	374.6	10.53	67.12	23.69
4		UN	5.70	2.66	599.1	3.76	83.60	17.53
	0.14	TR	9.14	4.66	769.6	6.32	110.34	25.36
	••••	PL	23.36	15.59	976.6	18.66	154.51	47.13
		UN	1.46	0.88	227.1	1.14	25.97	4.29
	0.2	TR	2.52	1.59	292.8	2.01	34.76	6.71
	0.2	PL	8.39	6.32	376.1	7.27	51.86	15.77
5		UN	2.85	1.49	601.8	2.03	60.68	8.87
	0.14	TR	4.84	2.70	773.2	3.56	80.51	13.58
	0.14	PL	15.15	10.69	981.3	12.57	115.45	29.86

Table 1. Center deflections of orthotropic plates (material I)

 $\bar{w} = [w(a/2, 0)/q_0]10^6, a = 200$ in.

h/a	Loading	SS	СС	FF	SC	SF	CF	
	UN	6.85	3.86	215.9	5.10	47.67	18.86	
0.2	TR	10.23	6.18	277.7	7.87	62.82	25.97	
	PL	20.61	14.92	354.5	17.34	87.27	47.32	
	UN	14.88	6.90	585.5	9.81	121.06	41.87	
0.14	TR	21.80	11.08	751.3	15.05	158.35	57.09	
	PL	41.18	26.33	949.4	31.99	213.4	87.32	
					_			
	UN	3.12	1.87	217.8	2.43	32.34	9.03	
0.2	TR	4.99	3.19	280.2	4.00	42.98	13.06	
	PL	12.47	9.48	357.6	10.85	61.72	24.09	
		< 3 3		501.4	4.00	00.07	10.00	
	UN	6.23	3.21	591.4	4.38	80.07	18.88	
0.14	TR	9.78	5.47	758.9	7.18	105.47	26.99	
	PL	23.01	16.16	959.1	19.00	146.04	47.58	
	LIN	1 73	1.09	218 7	1 39	73 78	4.95	
0.2	TP	2 91	1.00	210.7	2 37	31.80	7 53	
0.2	PI	8 64	6.65	359 1	7 59	46 99	16.11	
	12	0.04	0.05	557.1	1.57	40.77	10.11	
	UN	3.23	1.82	594.2	2.41	57.29	9.84	
0.14	TR	5.36	3.21	762.6	4.13	75.91	14.81	
	PL	15.19	11.21	963.8	12.97	107.72	30.33	
	<i>h/a</i> 0.2 0.14 0.2 0.14 0.2 0.14	h/aLoadingh/aLoading0.2TR PL0.14UN TR PL0.2TR PL0.14UN TR PL0.2TR PL0.14UN TR PL0.14TR PL	h/a Loading SS 0.2 TR TR PL 10.23 20.61 0.14 TR TR PL 21.80 PL 0.14 TR PL 41.18 0.2 TR PL 4.99 PL 0.14 TR PL 9.12 2.47 0.14 TR PL 9.78 PL 0.14 TR PL 9.78 PL 0.14 TR PL 23.01 0.2 TR PL 2.91 PL 0.14 TR TR 5.36 PL 0.14 TR TR 5.36 PL	h/a Loading SS CC 0.2 TR 10.23 6.18 PL 20.61 14.92 0.14 TR 21.80 11.08 PL 41.18 26.33 0.2 TR 4.99 3.19 PL 12.47 9.48 0.14 TR 9.78 5.47 PL 23.01 16.16 0.2 TR 2.91 1.90 PL 8.64 6.65 0.14 TR 5.36 3.21	h/aLoadingSSCCFF0.2UN6.853.86215.90.2TR10.236.18277.7PL20.6114.92354.50.14TR21.8011.08PL41.1826.33949.40.2TR4.993.19280.2PL12.479.480.14TR9.785.47758.9PL23.0116.16959.10.2TR2.910.14TR9.785.47758.9PL23.0116.16959.10.2TR2.910.14TR2.911.90281.3PL8.646.65359.10.14TR0.14TR5.363.21762.6PL15.1911.21963.8	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	h/a Loading SS CC FF SC SF 0.2 TR 10.23 6.18 277.7 7.87 62.82 PL 20.61 14.92 354.5 17.34 87.27 0.14 TR 21.80 11.08 751.3 15.05 158.35 0.14 TR 21.80 11.08 751.3 15.05 158.35 PL 41.18 26.33 949.4 31.99 213.4 0.2 TR 4.99 3.19 280.2 4.00 42.98 PL 12.47 9.48 357.6 10.85 61.72 0.14 TR 9.78 5.47 758.9 7.18 105.47 PL 23.01 16.16 959.1 19.00 146.04 0.2 TR 2.91 1.90 281.3 2.37 31.80 0.14 TR 9.78 5.47 758.9 7.18 105.47 PL	

Table 2. Center deflections for cross-ply (0°/90°/0°) laminates (material I)

Table 3. Center deflections of orthotropic plates (material II)

	h/a		ŵ						
a/b		Loading	SS	CC	FF	SC	SF	CF	
		UN	56.64	33.66	382.8	43.48	216.3	115.82	
	0.2	TR	81.31	50.85	498.8	63.95	285.8	157.07	
		PL	142.14	101.17	662.8	119.01	397.3	236.5	
3		TIN	100.26	60.19	947 9	97.07	179 6	242.1	
	0.14		120.30	00.18	1009.2	120.25	4/0.0	243.1	
	0.14		109.24	177.64	1070.5	219.2	020.9	325.0	
		FL	282.2	177.04	1433.7	216.5	830.0	4/5.0	
		UN	26.89	16.68	383.7	21.33	175.32	66.66	
	0.2	TR	41.26	26.96	499.8	33.52	232.5	93.14	
		PL	86.36	64.65	664.1	74.75	328.6	153.62	
4		UN	52 80	78 57	850 1	29 27	296.7	125.05	
	0.14	TP	70 /6	45 90	1101 2	50.52	507.4	133.03	
	0.14	DI	160.40	110.86	1439 3	131 74	507.0	205.6	
		L.	100.49	110.80	1439.5	131.74	090.4	293.0	
		UN	15.13	9.62	384.1	12.21	144.3	40.13	
	0.2	TR	24.51	16.29	500.4	20.18	192.14	58.14	
-		PL	59.88	45.54	664.8	52.41	275.8	106.45	
5		UN	27 84	16 20	851.3	21.24	316.2	78 34	
	0 14	TR	44 48	27 40	1102.8	34 80	416.0	111 54	
	0.14	PL	106.94	77.97	1441.3	91.01	581.7	197.38	

			<i>พ</i> ี					
<i>a</i> /b	h/a	Loading	SS	CC	FF	SC	SF	CF
		UN	46.33	26.80	434.7	35.17	236.5	104.16
	0.2	TR	68.83	42.18	567.3	53.70	313.1	143.35
2		PL	131.74	93.63	757.4	110.40	438.7	225.9
3		UN	96.52	47.57	933.3	66.08	511.4	216.9
	0.14	TR	140.12	74.19	1211.0	99.47	671.3	294.0
		PL	255.9	163.82	1591.2	200.1	918.8	446.8
		UN	21.61	13.01	435.4	16.90	191.72	55.89
	0.2	TR	34.48	21.85	568.1	27.62	254.7	80.03
		PL	80.41	59.17	758.4	69.05	362.4	141.88
4		UN	41.46	22.42	935.1	30.20	414.0	112.47
	0.14	TR	64.97	37.48	1213.3	48.90	545.1	158.04
		PL	147.42	102.57	1594.1	121.85	756.1	269.3
		UN	12.15	7.36	435.7	9.56	157.83	32.26
	0.2	TR	20.39	12.88	568.5	16.35	210.4	48.31
_		PL	55.74	40.91	758.9	47.89	303.8	97.17
5		UN	21.93	12.69	936.0	16.72	339.6	62.73
	0.14	TR	36.41	22.14	1214.4	28.45	448.6	92.10
	V.14	PL	99.02	71.60	1595.6	84.08	630.7	178.91

Table 4. Center deflections for cross-ply $(0^{\circ}/90^{\circ}/0^{\circ})$ laminates (material II)

Table 5. Axial center stresses for orthotropic plates (material I)

	h/a		σ ₁₁						
a/b		Loading	SS	CC	FF	SC	SF	CF	
		UN	1.017	0.425	19.50	0.649	4.141	0.849	
	0.2	TR	1.975	1.110	26.40	1.448	6.353	2.060	
		PL	11.735	10.209	45.12	10.844	18.641	12.997	
3									
		UN	2.058	0.751	39.02	1.187	8.414	1.395	
	0.14	TR	3.847	1.898	52.43	2.582	12.626	3.445	
		PL	18. 64 6	15.184	83.87	16.522	31.92	19.81	
		UN	0.585	0.253	19.49	0.393	2.472	0.098	
	0.2	TR	1.204	0.696	26.39	0.913	4.035	0.878	
		PL	9.397	8.302	45.17	8.792	14.879	10.494	
4									
		UN	1.132	0.426	39.07	0.679	5.178	0.022	
	0.14	TR	2.243	1.130	52.52	1.544	8.168	1.291	
		PL	14.316	11.945	84.09	12.914	24.93	15.382	
		LINI	0 200	0.194	10 47	0 284	1 543	-0.078	
	0.2		0.337	0.104	26 37	0.663	2 688	0.466	
	0.2		7 863	6.057	20.37	7 385	12 354	8 995	
5		PL	1.002	0.957	45.10	7.505	12.554	0.775	
5		UN	0.739	0.292	39.06	0.468	3.383	-0.284	
	0.14	TR	1.504	0.780	52.52	1.071	5.599	0.568	
	0.14	PL	11.582	9.790	84.17	10.563	20.37	12.880	
		~ ~~							

 $\bar{\sigma}_{11} = [\sigma_{11}(a/2, 0, h/2)/q_0]10^6, a = 200$ in.

			$\bar{\sigma}_{11}$						
a/b	h/a	Loading	SS	CC	FF	SC	SF	CF	
		UN	1.082	0.482	19.66	0.729	4.272	1.098	
	0.2	TR	2.115	1.262	26.51	1.619	6.513	2.402	
		PL	11.160	9.792	43.66	10.386	17.708	12.419	
3									
		UN	2.106	0.794	39.54	1.262	8.519	1.622	
	0.14	TR	3.983	2.077	53.01	2.784	12.766	3.799	
		PL	17.928	14.814	82.76	16.049	30.78	19.17	
		UN	0.620	0.289	19.67	0.439	2.602	0.263	
	0.2	TR	1.305	0.802	26.52	1.032	4.213	1.138	
		PL	9.072	8.082	43.74	8.546	14.181	10.054	
4									
		UN	1.156	0.455	39.62	0.725	5.278	0.185	
	0.14	TR	2.350	1.260	53.13	1.695	8.319	1.586	
		PL	13.949	11.835	83.03	12.735	24.05	14.967	
			0.400	0.015	10.77		1 (82)	0.007	
	• •		0.427	0.215	19.00	0.321	1.073	0.027	
	0.2	IK	0.927	0.588	20.51	0.756	2.8/9	0.662	
		PL	1.125	0.890	43.75	/.298	11.859	8.080	
3		LINI	0 750	0 321	20.62	0 507	3 402	0 175	
	0.14	TP	1 502	0.521	53.05	1 100	5.772	-0.175	
	0.14	DI	11 476	0 863	83.10 83.14	10 592	10 74	12 645	
		rL	11.470	7.003	65.14	10.392	17./4	12.045	

Table 6. Axial center stresses for cross-ply $(0^{\circ}/90^{\circ}/0^{\circ})$ laminates (material I)

Table 7. Axial center stresses for orthotropic plates (material II)

	h/a		<i>ā</i> ₁₁						
a/b		Loading	SS	СС	FF	SC	SF	CF	
		UN	2.278	1.242	21.06	1.679	11.352	5.934	
	0.2	TR	4.879	3.334	29.36	4.002	16.724	9.691	
•		PL	27.87	25.22	59.66	26.41	43.31	34.21	
3		UN	4 700	2 026	40 47	3 020	22.24	10 878	
	0 14	TR	9.082	5 235	55 33	6714	31 78	17 068	
	0.11	PL	43.07	36.90	102.1	39.41	72.08	53.15	
		LIN	0 896	0.510	21.00	0.682	8 854	2 1 4 5	
	02	TR	2 647	1 923	29.39	2 256	13 324	5 865	
	0.2	PL	23.38	21.52	59.71	22.41	38.29	28.41	
4									
		UN	1.759	0.791	40.56	1.170	17.610	5.627	
	0.14	TR	4.583	2.908	55.45	3.600	25.56	9.957	
		PL	34.83	31.03	102.2	32.72	63.17	42.75	
		UN	0.440	0.262	21.10	0.345	6.821	1 667	
	0.2	TR	1.699	1.266	29.40	1.471	10.544	3 732	
_	••	PL	20.51	18.85	59.73	19.65	34.00	24.64	
5		UN	0.813	0 391	40.59	0 570	13 022	2 800	
	0.14	TR	2.769	1 877	55 50	2 272	20.50	6 1 1 1	
	0.14	PL	29.90	27.00	102.3	28.36	55.78	36.33	

		_	$ ilde{\sigma}_{11}$					
a/b	h/a	Loading	SS	СС	FF	SC	SF	CF
		UN	1.541	0.815	22.20	1.118	11.447	4.856
	0.2	TR	3.902	2.668	31.11	3.205	16,995	8.389
3		PL	28.60	25.93	64.92	27.15	46.21	34.86
5		UN	3.264	1.371	42.32	2.066	22.48	9.106
	0.14	TR	7.191	4.197	58.07	5.358	32.28	14.875
		PL	43.54	37.75	109.7	40.19	76.29	53.58
		UN	0.580	0.333	22.22	0.441	8.825	2.330
	0.2	TR	2.117	1.525	31.13	1.796	13.391	4.821
A		PL	24.01	21.88	64.96	22.90	40.62	28.91
4		UN	1.158	0.536	42.39	0.781	17.763	4.300
	0.14	TR	3.607	2.327	58.15	2.866	25.88	8.243
		PL	35.44	31.54	109.8	33.32	66.75	43.15
		UN	0.291	0.178	22.22	0.230	6.675	1.145
	0.2	TR	1.366	0.997	31.14	1.168	10.429	3.001
5		PL	20.93	18.84	64.97	19.84	35.81	25.05
5		UN	0.539	0.273	42.41	0.387	13.935	2.063
	0.14	TR	2.190	1.496	58.18	1.807	20.69	4.953
		PL	30.30	27.09	109.9	28.61	58.71	36.82

Table 8. Axial center stresses for cross-ply $(0^{\circ}/90^{\circ}/0^{\circ})$ laminates (material II)

The following notation has been used throughout the tables:

SS—simply supported at y = -b/2 and at y = b/2;

- CC—clamped at y = -b/2 and at y = b/2;
- FF—free at y = -b/2 and at y = b/2;

SC—simply supported at y = -b/2 and clamped at y = b/2;

- SF—simply supported at y = -b/2 and free at y = b/2;
- CF—clamped at y = -b/2 and free at y = b/2;
- UN-uniformly distributed load;
- TR—triangular distributed load;
- PL—point load at the center of the plate.

To show the effect of transverse shear strains on the deflections plots of non-dimensionalized center deflection, $\bar{w} = 10^3 w(a/2, 0) h^3 E_2/(q_0 a^4)$, vs side to thickness ratio of various plates are presented in Figs 3-5. The shear deformation effect is more significant in crossply plates than in orthotropic plates. Also, the first-order shear deformation theory (FSDT) over predicts deflections relative to the higher-order theory (HSDT).

Figures 6 and 7 contain plots of the transverse stresses σ_{13} through laminate thickness for various boundary conditions. The stresses were computed using lamina constitutive relations. The transverse shear stresses are constant and parabolic, through thickness of each lamina, respectively, for the first- and higher-order theories. The discontinuity at interface of lamina is due to the mismatch of the material properties. When the stresses (σ_x , σ_y , σ_{xy}) obtained from the constitutive equations are substituted into the equilibrium equations of elasticity and integrated to determine the transverse shear stresses, the resulting functions will be continuous through the thickness.

Plots of the non-dimensionalized center stress, $\bar{\sigma}_{11} = 10^2 \sigma_{11}(a/2, 0, h/2)h^2/(q_0 a^2)$, vs side to thickness ratio for simply supported and free-free (SSFF) plates are shown in Figs 8 and 9. The shear deformation effect is quite significant for a/h ratios smaller than 10.

Fig. 3. Non-dimensionalized center deflection vs side to thickness ratio of SSSC plates using the first- and higher-order theories (material II, a/b = 4, uniform load).

Fig. 4. Non-dimensionalized center deflection vs side to thickness ratio of SSFC laminates using the first- and higher-order theories (material II, a/b = 4, uniform load).

Fig. 5. Non-dimensionalized center deflection vs side to thickness ratio of SSCC laminates using the first- and higher-order theories (material II, a/b = 4, uniform load).

Fig. 6. Variation of the transverse stress through the thickness of orthotropic plates under uniform load and subjected to various boundary conditions (material II, a/b = 4, h/a = 0.14).

Fig. 7. Variation of the transverse sheer stress through the thickness of cross-ply $(0^{\circ}/90^{\circ}/0^{\circ})$ laminates under uniform load and subjected to various boundary conditions (a/b = 4, material II, h/a = 0.14).

Fig. 8. Non-dimensionalized center stress vs side to thickness ratio for simply supported laminates under uniform load (a/b = 4, material II).

Fig. 9. Non-dimensionalized center stress vs side to thickness ratio for SSFF laminates under uniform load (a/b = 4, material II).

CONCLUSIONS

Analytical solutions based on a refined shear deformation plate theory are developed for orthotropic and symmetric cross-ply laminates under various boundary conditions and loads. The Lévy solution method in conjunction with the state-space approach is used to solve the equations. Rectangular plates with simply supported boundary conditions on two parallel edges, while the other two edges are subjected to a combination of free simply supported and clamped boundary conditions are solved. The numerical and graphical results presented should serve as a reference to designers and numerical analysts.

Acknowledgement—The research reported herein is supported by the Mathematical Sciences Division of the Army Research Office through Grant DAAG-29-85-K-0007. The support is gratefully acknowledged.

REFERENCES

- 1. S. Srinivas, C. V. Joga Rao and A. K. Rao, An exact analysis for vibration of simply supported homogeneous and laminated thick rectangular plates. J. Sound Vibr. 12, 187-199 (1970).
- 2. S. Srinivas and A. K. Rao, Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. Int. J. Solids Structures 6, 1463-1481 (1970).
- 3. S. A. Hussainy and S. Srinivas, Flexure of rectangular composite plates. Fibre Sci. Technol. 8, 59-76 (1975).
- N. J. Pagano, Exact solutions for rectangular bidirectional composites and sandwich plates. J. Composite Mater. 4, 20-34 (1970).
- 5. J. M. Whitney and A. W. Leissa, Analysis of heterogeneous anisotropic plates. J. Appl. Mech. 36, 261-266 (1969).
- N. J. Pagano, Exact solutions for composite laminates in cylindrical bending. J. Composite Mater. 3(3), 398-411 (1969).
- J. M. Whitney, The effect of transverse shear deformation on the bending of laminated plates. J. Composite Mater. 3(3), 534-547 (1969).
- J. M. Whitney and N. J. Pagano, Shear deformation in heterogeneous anisotropic plates. J. Appl. Mech. 37, 1031-1036 (1970).
- 9. C. W. Bert and T. L. C. Chen, Effect of shear deformation on vibration of antisymmetric angle-ply laminated rectangular plates. Int. J. Solids Structures 14, 465-473 (1978).
- J. N. Reddy and C. W. Chao, A comparison of closed form and finite element solutions of thick laminated anisotropic rectangular plates. Nucl. Engng Des. 64, 153-167 (1981).
- 11. J. N. Reddy, Energy and Variational Methods in Applied Mechanics. Wiley, New York (1984).
- 12. J. N. Reddy, A simple higher-order theory for laminated plates. J. Appl. Mech. 51, 745-752 (1984).
- J. N. Reddy, A refined nonlinear theory of plates with transverse shear deformation. Int. J. Solids Structures 20, 881-896 (1984).

- J. N. Reddy and N. D. Phan, Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory. J. Sound Vibr. 98(2), 157-170 (1985).
 J. N. Reddy, A. A. Khdeir and L. Librescu, The Lévy type solutions for symmetric rectangular composite plates using the first-order shear deformation theory. J. Appl. Mech. (1987), in press.
 J. N. Franklin, Matrix Theory. Prentice-Hall, Englewood Cliffs, New Jersey (1968).