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Abstnct-The Levy type solution procedure in conjunction with the state-space concept is used to
determine the deflections and stresses for symmetric laminated composite plates with rectangular
geometries by using a refined shear deformation theory. Combinations ofsimply supported, clamped
and free boundary conditions are considered. Numerical results are presented for rectangular plates
with different edae conditions, aspect ratios, lamination schemes and loadings. The solution should
serve as a reference for designers and practitioners ofnumerical/computational methods.

INTRODUCTION

Three-dimensional elasticity solutions for the bending ofsimply supported thick orthotropic
rectangular plates and laminates were obtained by Srinivas and his coworkers[I-3], and
Pagano[4]. The Navier solution of simply supported rectangular plates was developed by
Whitney and Leissa[5] for classical laminate theory, Pagano and Whitney[6-8], Bert and
Chen[9] and Reddy and Chao[IO] for the first-order shear deformation (i.e. the Reissner
Mindlin plate) theory[ll], and by Reddy and his colleagues[12-14] for refined shear defor
mation theories. Recently, the Levy type solutions were developed by Reddy et aI.[IS] for
symmetric laminates with different combinations of free, clamped and simply supported
boundary conditions by using the first-order shear deformation theory.

The present study deals with the development of the Levy type solution of the refined
shear deformation theory of Reddy[12, 13] for symmetric rectangular laminates with two
opposite edges simply supported and the remaining edges subjected to a combination of
free, simply supported and clamped boundary conditions. The state-space concept is used
to solve the ordinary differential equations obtained after the application of the Levy
solution procedure.

GOVERNING EQUATIONS

Consider a laminated plate composed of N orthotropic layers, symmetrically located
with respect to the midplane of the laminate. The governing equations of the refined theory
are based on the following displacement field [I 1-13] :

UI =u+z[~x-~(~J(~x+ ~:)J

U2 =v+Z[~y-~(~J(~y+ ~;)J
(I)

where (u" U2' U3) are the displacements along the X-, y- and z-coordinates respectively (u,
v, w) are the corresponding displacements of a point on the midplane of the laminate, and
~x and'"yare the rotations of a transverse normal about the y- and x-axes, respectively.
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The cubic variation of u\ and U2 through laminate thickness introduces higher-order
resultants

f
h!2

Pi = (J jz 3 dz
-h/2

(i = 1, 2, 6)

and laminate stiffnesses

(i, j = 1, 2, 6)

(i, j = 4,5).

For symmetrical cross-ply laminated plates, the following stiffness coefficients vanish[II]:

for i, j = 1, 2, 4, 5, 6

A I6 = A 26 = D16 = D26 = F I6 = F26 = H 16 = H26 = 0

A 45 = D 45 = F45 = O.

This implies that the effect of coupling between stretching and bending vanishes. For such
laminates the governing equations are given by (see Refs [11, 12])

(2a)
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(2b)

(2c)

Here w denotes the transverse displacement, 1/1.. and I/Iy are the rotations of the nonnal to
midplane about the y- and x-axes, respectively, q is the distributed transverse load, and Aij;
Dij' Fij' H jj are the plate stiffnesses, defined by

(i, j = I, 2, 6)

0, j = 4,5). (3)

Here QW denote the reduced orthotropic moduli of the kth lamina. The boundary con
ditions of the refined theory are of the fonn: specify

w or Q"
ow

P"on
or

on r (4)

1/1" or Mil

I/IIIS or MIlS

where r is the boundary of the midplane 0 of the plate, and

,. 2 ". 2 ,.
M" = M\n.. +Mzn, +2M6n..n,

"".. ill 2 2MIlS = (Mz-M\)n...n,+M6(n.. -n,)

P" = PJn;+P~;+2P~..n,

PM = (PZ-P1)n..n,+P6(n;-n;)

Q '" '" 4 (OP118 oP,,)
II = !o!11tx +!o!Zn,+ 3hZ AS + an

$AS 23: 10...8
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~ 4
M=M--P

I '3h 2 I

~ 4
Qi = Qi- h 2 R j

a a a
an = nxax +nyay'

U= I, 2, 6)

U=I,2)

a a a
as = nxay -nyax' (5)

The stress resultants appearing in eqns (5) can be expressed in terms of the generalized
displacements (w, I/Ix, I/Iy) as

M1= D I1 a:: +D 12 O~v +F11 ( - 3:2)(0:: + ~;)+FI2(- 3:2)(0~ + ~::)

al/lx ol/ly (4 )(Ol/lx 02W
) (4 )(01/1 a2w)M2= DI2 ox +D22 oy +F12 - 3h2 ax + ox2 +F22 - 3h2 0; + oy2

M D (Ol/lx Ol/ly) (4 )(Ol/lx ol/ly 02W )
6= 66 ay+ox +F66 -3h2 Oy+a;+2 0xoy

Q2 = A44 (I/Iy + ~;)+D44( - :2) (I/Iy+ ~;)

QI = ASS(I/Ix+ ~:)+Dss( - h42 ) (I/Ix+ ~:)

P J = FI1 o~x +F12 O~ +HI1 ( - 3:2)(o~x + ~::)+HI2(_3:2)(o~ + ~::)

P2= F12 a~x +F22 O~ +HI2 (- 3:2)(0~x + ~;)+H22( - 3:2)(0~ + ~::)

P (
Ol/ly Ol/lx) (4 )(Ol/lx ol/ly 02W )

6=F66 -+- +H66 -- -+-+2-ax oy 3h2 oy ox ox oy

R2= D44(~; + l/Iy)+F44(- 3:2)(~; +I/Iy)

R 1 = Dss(~: +l/Ix)+Fss ( - 3:2)(~: +I/Ix). (6)

THE SOLUTION PROCEDURE

The Levy method can be used to solve eqns (2) for rectangular plates for which two
opposite edges are simply supported. The other two edges can each have arbitrary boundary
conditions. Here we assume that the edges parallel to the y-axis are simply supported, and
the origin of the coordinate system is taken as shown in Fig. I. The simply supported
boundary conditions can be satisfied by trigonometric functions in x. The resulting ordinary
differential equations in y can be solved using the state-space concept.

Following the Levy type procedure, we assume the following representation of the
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Fig. I. Geometry and coordinate system of rectangular plate.

displacements and loading:

00

w(x, y) = L Wm(y) sin IXX
m-I

00

t/JAx, y) = L Xm(y) cos IXX
m-]

00

t/Jy(x, y) = L Ym(y) sin ax
m-I

00

q(x, y) = L Qm(Y) sin ax
m-I

(7)

where a = mn/a and Wm, Xm, Ymand Qm denote amplitudes ofw, t/Jx, t/Jy and q, respectively.
Substituting eqns (7) into eqns (2), we obtain

el W;.''' +e2W:':+e3 Wm+e4X:':+eSXm+e6Y,:," +e7Y;"+Qm = 0

es W:':+e9Wm+eIOX:': +eIIXm+eI2Y;" = 0

where primes on the variables indicate differentiation with respect to Y, and

( 4)2 8 (4)2
e2=2 3h2 a2(H12+2H66)+A44-h2D44+ h2 F44

es = a
33~2 (F11 - 3~2 H 11 )+a[:2 DSS -(:2JFss -A ss]

e6 = 312 (F22 - 3~2 H 22 )

(8)
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el6 = D22 - 3~2 £22 + (312Y H22

el7 = (X{ -D 66 + 3~2 £66 - (312JH 66J+ :2 D 44 - (:2)2£44 -A 44 · (9)

Equations (8) can be written as

W~" = Cj W;';+C2Wm+C3Xm+C4Y;"+COQm

X~ = CSW~+C6Wm+C7Xm+C8Y;"

where

Co = - 2
et el6+ e6

Cs = -e4!eIO,

(10)

(11)

The linear system of ordinary differential equations, eqns (0), with constant
coefficients can be reduced to a single matrix differential equation using the state-space
concept (see Ref. [16])

x' =Ax+b.

This can be done by introducing the variables

(12)

Xs = Y;" (13)



(15)
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where

X'I 0

X2 0

x; 0

x' = x~ b= CoQm

x; 0

X6 0

X7 0

Xs 0

and

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

A= C2 0 CI 0 C3 0 0 C4 (14)
0 0 0 0 0 1 0 0

C6 0 Cs 0 C7 0 0 C8

0 0 0 0 0 0 0 1

0 CIO 0 C9 0 C" C12 0

The solution of eqn (12) is given by

x = eAy K+eAY fe-A~ b d~

where K is a constant vector to be determined from the boundary conditions, e
Ay denotes

the product

eAy = [c] o (16)

[c] is the matrix of eigenvectors, Aj(i = 1,2,3, ... ,8) are the distinct eigenvalues associated
with matrix A, and [C]-I is the inverse of the eigenvectors matrix [c].

The following boundary conditions are used on the remaining two edges (i.e. the edges
parallel to the x-axis) at y = =+= b/2 :

simply supported

clamped

free

w = t/J" = P2 =M 2 = 0

ow
w = oy = t/J" = t/Jy = 0

P 2 =M2 =O

4
M 6 - 3h2P6 =0

4 4 (oP6 oP2)
Q2- h2 R 2+ 3h2 ox + oy = O. (17)
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Fig. 2. Various types of transverse loads.

NUMERICAL RESULTS

Numerical results are presented for orthotropic and symmetric cross-ply (0°/90% °)
plates subjected to three types of loads: uniformly distributed load (qo), triangular dis
tributed load (2qo) and concentrated load P as shown in Fig. 2. The following sets of
material properties are used in the calculations:

Materia/ I

Materia/II

£1 = 20.83 X 106 psi,

G I2 = 6.10x 106 psi,

G23 = 6.19 X 106 psi,

£1 = 19.2 X 106 psi,

G12 = G 13 = 0.82 X 106 psi,

VI2 = 0.24.

£2 = 10.94 X 106 psi

G l3 = 3.71 X 106 psi

Vl2 = 0.44

£2 = 1.56 X 106 psi

G23 = 0.523 X 106 psi

Tables 1-4 contain center deflections wwhile Tables 5-8 contain non-dimensionalized
axial stresses aI I for orthotropic and symmetric cross-ply (0°/90% °) plates.

Table I. Center deflections of orthotropic plates (material I)

IV

alb hla Loading SS CC FF SC SF CF

UN 6.29 3.19 224.4 4.38 50.14 17.55
0.2 TR 9.60 5.29 289.2 6.98 66.30 24.49

PL 20.95 14.46 371.4 17.09 93.46 40.99
3

UN 14.23 5.89 593.1 8.74 124.72 40.13
0.14 TR 21.15 9.71 761.9 13.71 163.50 55.13

PL 42.38 25.71 966.8 31.83 222.8 87.19

UN 2.72 1.53 226.3 2.03 34.64 8.07
0.2 TR 4.47 2.68 291.6 3.44 46.13 11.91

PL 12.38 9.10 374.6 10.53 67.12 23.69
4

UN 5.70 2.66 599.1 3.76 83.60 17.53
0.14 TR 9.14 4.66 769.6 6.32 110.34 25.36

PL 23.36 15.59 976.6 18.66 154.51 47.13

UN 1.46 0.88 227.1 1.14 25.97 4.29
0.2 TR 2.52 1.59 292.8 2.01 34.76 6.71

PL 8.39 6.32 376.1 7.27 51.86 15.77
5

UN 2.85 1.49 601.8 2.03 60.68 8.87
0.14 TR 4.84 2.70 773.2 3.56 80.51 13.58

PL 15.15 10.69 981.3 12.57 115.45 29.86

IV = [w(aI2, O)/qolIO', a = 200 in.
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Table 2. Center deflections for cross-ply (0°/90°/0°) laminates (materiall)

Iii

alb "Ia Loading 55 CC FF SC SF CF

UN 6.85 3.86 215.9 5.10 47.67 18.86
0.2 TR 10.23 6.18 277.7 7.87 62.82 25.97

PL 20.61 14.92 354.5 17.34 87.27 47.32
3

UN 14.88 6.90 585.5 9.81 121.06 41.87
0.14 TR 21.80 11.08 751.3 15.05 158.35 57.09

PL 41.18 26.33 949.4 31.99 213.4 87.32

UN 3.12 1.87 217.8 2.43 32.34 9.03
0.2 TR 4.99 3.19 280.2 4.00 42.98 13.06

PL 12.47 9.48 357.6 10.85 61.72 24.09
4

UN 6.23 3.21 591.4 4.311 80.07 Ill.llll
0.14 TR 9.78 5.47 758.9 7.18 105.47 26.99

PL 23.01 16.16 959.1 19.00 146.04 47.58

UN 1.73 1.08 218.7 1.38 23.78 4.95
0.2 TR 2.91 1.90 281.3 2.37 31.80 7.53

PL 8.64 6.65 359.1 7.59 46.99 16.11
5

UN 3.23 1.82 594.2 2.41 57.29 9.84
0.14 TR 5.36 3.21 762.6 4.13 75.91 14.81

PL 15.19 I J.21 963.8 12.97 107.72 30.33

Table 3. Center deflections of orthotropic plates (material II)

Iii

alb hla Loading SS CC FF SC 5F CF

UN 56.64 33.66 382.8 43.48 216.3 115.82
0.2 TR 81.31 50.85 498.8 63.95 285.8 157.07

PL 142.14 101.17 662.8 119.01 397.3 236.5
3

UN 120.36 60.18 847.8 82.97 478.6 243.1
0.14 TR 169.24 90.13 1098.3 120.35 626.9 325.6

PL 282.2 177.64 1435.7 218.3 85Q.6 475.0

UN 26.89 16.68 383.7 21.33 175.32 66.66
0.2 TR 41.26 26.96 499.8 33.52 232.5 93.14

PL 86.36 64.65 664.1 74.75 328.6 153.62
4

UN 52.80 28.52 850.1 38.32 386.2 135.05
0.14 TR 79.46 45.89 1101.3 59.63 507.6 185.77

PL 160.49 110.86 1439.3 131.74 698.4 295.6

UN 15.13 9.62 384.1 12.21 144.3 40.13
0.2 TR 24.51 16.29 500.4 20.18 192.14 58.14

PL 59.88 45.54 664.8 52.41 275.8 106.45
5

UN 27.84 16.20 851.3 21.24 316.2 78.34
0.14 TR 44.48 27.40 1102.8 34.89 416.9 111.54

PL 106.94 77.97 1441.3 91.01 581.7 197.38
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Table 4. Center deflections for cross-ply (0°/90°/0°) laminates (material II)

Ii'

alb hla Loading SS CC FF SC SF CF

UN 46.33 26.80 434.7 35.17 236.5 104.16
0.2 TR 68.83 42.18 567.3 53.70 313.1 143.35

PL 131.74 93.63 757.4 110.40 438.7 225.9
3

UN 96.52 47.57 933.3 66.08 511.4 216.9
0.14 TR 140.12 74.19 1211.0 99.47 671.3 294.0

PL 255.9 163.82 1591.2 200.1 918.8 446.8

UN 21.61 13.01 435.4 16.90 191.72 55.89
0.2 TR 34.48 21.85 568.1 27.62 254.7 80.03

PL 80.41 59.17 758.4 69.05 362.4 141.88
4

UN 41.46 22.42 935.1 30.20 414.0 112.47
0.14 TR 64.97 37.48 1213.3 48.90 545.1 158.04

PL 147.42 102.57 1594.1 121.85 756.1 269.3

UN 12.15 7.36 435.7 9.56 157.83 32.26
0.2 TR 20.39 12.88 568.5 16.35 210.4 48.31

PL 55.74 40.91 758.9 47.89 303.8 97.17
5

UN 21.93 12.69 936.0 16.72 339.6 62.73
0.14 TR 36.41 22.14 1214.4 28.45 448.6 92.10

PL 99.02 71.60 1595.6 84.08 630.7 178.91

Table 5. Axial center stresses for orthotropic plates (material I)

all

alb hla Loading SS CC FF SC SF CF

UN 1.017 0.425 19.50 0.649 4.141 0.849
0.2 TR 1.975 1.110 26.40 1.448 6.353 2.060

PL 11.735 10.209 45.12 10.844 18.641 12.997
3

UN 2.058 0.751 39.02 1.187 8.414 1.395
0.14 TR 3.847 1.898 52.43 2.582 12.626 3.445

PL 18.646 15.184 83.87 16.522 31.92 19.81

UN 0.585 0.253 19.49 0.393 2.472 0.098
0.2 TR 1.204 0.696 26.39 0.913 4.035 0.878

PL 9.397 8.302 45.17 8.792 14.879 10.494
4

UN 1.132 0.426 39.07 0.679 5.178 0.022
0.14 TR 2.243 1.130 52.52 1.544 8.168 1.291

PL 14.316 11.945 84.09 12.914 24.93 15.382

UN 0.399 0.184 19.47 0.284 1.543 -0.Q78
0.2 TR 0.845 0.505 26.37 0.663 2.688 0.466

PL 7.862 6.957 45.18 7.385 12.354 8.995
5

UN 0.739 0.292 39.06 0.468 3.383 -0.284
0.14 TR 1.504 0.780 52.52 1.071 5.599 0.568

PL 11.582 9.790 84.17 10.563 20.37 12.880

all = [0'1,(0/2,0, h/2)/qo]10', a = 200 in.
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Table 6. Axial center stresses for cross-ply (0°/90 0 /0°) laminates (material I)

cT II

alb hla Loading SS CC FF SC SF CF

UN 1.082 0.482 19.66 0.729 4.272 1.098
0.2 TR 2.115 1.262 26.51 1.619 6.513 2.402

PL 11.160 9.792 43.66 10.386 17.708 12.419
3

UN 2.106 0.794 39.54 1.262 8.519 1.622
0.14 TR 3.983 2.077 53.01 2.784 12.766 3.799

PL 17.928 14.814 82.76 16.049 30.78 19.17

UN 0.620 0.289 19.67 0.439 2.602 0.263
0.2 TR 1.305 0.802 26.52 1.032 4.213 1.138

PL 9.072 8.082 43.74 8.546 14.181 10.054
4

UN 1.156 0.455 39.62 0.725 5.278 0.185
0.14 TR 2.350 1.260 53.13 1.695 8.319 1.586

PL 13.949 11.835 83.03 12.735 24.05 14.967

UN 0.427 0.215 19.66 0.321 1.673 0.027
0.2 TR 0.927 0.588 26.51 0.756 2.879 0.662

PL 7.725 6.890 43.75 7.298 11.859 8.680
5

UN 0.759 0.321 39.63 0.507 3.492 -0.175
0.14 TR 1.593 0.883 53.16 1.190 5.773 0.808

PL 11.476 9.863 83.14 10.592 19.74 12.645

Table 7. Axial center stresses for orthotropic plates (material II)

cT II

alb hla Loading SS CC FF SC SF CF

UN 2.278 1.242 21.06 1.679 11.352 5.934
0.2 TR 4.879 3.334 29.36 4.002 16.724 9.691

PL 27.87 25.22 59.66 26.41 43.31 34.21
3

UN 4.700 2.026 40.47 3.020 22.24 10.878
0.14 TR 9.082 5.235 55.33 6.714 31.78 17.068

PL 43.07 36.90 102.1 39.41 72.08 53.15

UN 0.896 0.510 21.09 0.682 8.854 3.145
0.2 TR 2.647 1.923 29.39 2.256 13.324 5.865

PL 23.38 21.52 59.71 22.41 38.29 28.41
4

UN 1.759 0.791 40.56 1.170 17.610 5.627
0.14 TR 4.583 2.908 55.45 3.600 25.56 9.957

PL 34.83 31.03 102.2 32.72 63.17 42.75

UN 0.440 0.262 21.10 0.345 6.821 1.667
0.2 TR 1.699 1.266 29.40 1.471 10.544 3.732

PL 20.51 18.85 59.73 19.65 34.00 24.64
5

UN 0.813 0.391 40.59 0.570 13.933 2.899
0.14 TR 2.769 1.877 55.SO 2.272 20.59 6.111

PL 29.90 27.00 102.3 28.36 55.78 36.33



1458 A. A. KHDEIR el al.

Table 8. Axial center stresses for cross-ply (0°/90°/0°) laminates (material II)

all

alb hla Loading SS CC FF SC SF CF

UN 1.S41 0.815 22.20 1.118 11.447 4.856
0.2 TR 3.902 2.668 31.11 3.205 16.995 8.389

PL 28.60 25.93 64.92 27.15 46.21 34.86
3

UN 3.264 I.371 42.32 2.066 22.48 9.106
0.14 TR 7.191 4.197 58.Q7 5.358 32.28 14.875

PL 43.54 37.75 109.7 40.19 76.29 53.58

UN 0.580 0.333 22.22 0.441 8.825 2.330
0.2 TR 2.ll7 1.525 3Ll3 1.796 13.391 4.821

PL 24.01 21.88 64.96 22.90 4Q.62 28.91
4

UN 1.158 0.536 42.39 0.781 17.763 4.300
0.14 TR 3.607 2.327 58.15 2.866 25.88 8.243

PL 35.44 31.54 109.8 33.32 66.75 43.15

UN 0.291 0.178 22.22 0.230 6.675 I.l45
0.2 TR 1.366 0.997 3I.l4 I.l68 10.429 3.001

PL 20.93 18.84 64.97 19.84 35.81 25.05
5

UN 0.539 0.273 42.41 0.387 13.935 2.063
0.14 TR 2.190 1.496 58.18 1.807 20.69 4.953

PL 30.30 27.09 109.9 28.61 58.71 36.82

The following notation has been used throughout the tables:

SS-simply supported at y = - b/2 and at y =b/2;
CC--<::lamped at y = -b/2 and at y = b/2;
FF-free at y = -b/2 and at y = b/2;
SC-simply supported at y = -b/2 and clamped at y = b/2;
SF-simply supported at y = -b/2 and free at y = b/2;
CF--<::lamped at y = - b/2 and free at y = b/2 ;
UN-uniformly distributed load;
TR-triangular distributed load;
PL-point load at the center of the plate.

To show the effect of transverse shear strains on the deflections plots of non-dimen
sionalizedcenterdeflection, W= I03w(a/2,O)h3E,j(qoa4

), vs side to thickness ratio ofvarious
plates are presented in Figs 3-5. The shear deformation effect is more significant in cross~

ply plates than in orthotropic plates. Also,the first-order shear deformationtheory (FSDT)
over predicts deflections relative to the higher-order theory (HSDT).

Figures 6 and 7 contain plots of the transverse stresses fll3 through laminate thickness
for various boundary conditions. The stresses were computed using lamina constitutive
relations. The transverse shear stresses are constant and parabolic, through thickness of
each lamina, respectively, for the first- and higher-order theories. The discontinuity at
interface of lamina is due to the mismatch of the material properties. When the stresses «(1""
fly, (1x,) obtained from the constitutive equations are substituted into the equilibrium
equations ofelasticity and integrated to determine the transverse shearstresses, the resulting
functions will be continuous through the thickness.

Plots of the non-dimensionalized center stress, UJl = 102(1Jl(a/2, 0, h/2)h2f(qoa2
), vs

side to thickness ratio for simply supported and free-free (SSFF) plates are shown in Figs
8 and 9. The shear deformation effect is quite significant for afh ratios smaller than 10.
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OO,FSDT

6 (0°/90% °), FSDT

0°, HSDT

W 4

2

O'---..........-_---I ..L-__....J

5 10 15 20

o/h

Fig. 3. Non-dimensionalized center deftection vs side to thickness ratio of SSSC plates using the
first- and higher-order theories (material II, alb = 4, uniform load).

20

OO,FSDT

(0°/90% °), FSDT
16

OO,HSDT

12
(0°/90% °) , HSDT

W

8

4

o"--__.......__........I--__...r.....__--J

5 '0 15 20
o/h

Fig. 4. Non-dimensionalized center deflection vs side to thickness ratio of SSFC laminates using
the first- and higher-order theories (material II. alb = 4. uniform load).
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8

0°, FSDT

6

W 4

2

5 10

o/h

15 20

Fig. 5. Non-dimensionalized center deflection vs side to thickness ratio of SSCC laminates using
the first- and higher-order theories (material II, alb = 4, uniform load).

6.04.5

0.5 ----IT, 0.5
I I I
ICC ISC JSs

---FSOTI I -HOOT
0.3 I 0.3

--- FSOT
-HSDT

0.1 0.1

l/h z Ih

-0.1 -0.1

-0.3 -0.3

Fig. 6. Variation of the transverse stress thrOllgh the thickDO$S oforthotropic plates under uniform
load and subjected to various boundary conditions (material II, alb =4, hla =0.14).
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Fig. 7. Variation ofthe transverse sheerstress throup the thickness ofcross-ply (0°/90°/0°) laminates
under uniform load and subjected to various boundary conditions (alb =4, material II. hla =0.14).
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Fig. 8. Non-dimensionalized center stress vs side to thickness ratio for simply supported laminates
under uniform load (alb - 4, material I!).
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Fig. 9. Non-dimensionalized center stress vs side to thickness ratio for SSFF laminates under
uniform load (alb == 4, materialll).

CONCLUSIONS

Analytical solutions based on a refined sbeardeformation plate theory are developed
for orthotropic and symmetric cross-ply laminates under various boundary conditions and
loads. The Uvy solution method in conjunction with the state-space·approach is used to
solve the equations. Rectangular plates with simply supported boundary conditions on two
parallel edges, while the other two edges are subjected to a combination of free simply
supported and clamped boundary conditions are solved. The numerical arid graphical
results presented should serve as a reference to designers and numerical analysts.
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